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REFRACTION OF PLANE-POLARIZED WAVES AT THE BOUNDARY
OF AN ELASTIC AND ELASTOPLASTIC HALF-SPACE”

A.G. BYKOVTSEV

Selfsimilar solutions of dynamic equations for antiplane deformation in
an ideal elasto plastic medium are considered. A solution is constructed
of the problem of the refraction of plane-polarized plane waves of an
arbitrary profile which penetrate from the elastic to the elastoplastic
half-space.

Selfsimilar solutions were investigated earlier /l-4/ when the rates
of displacements and stresses depend only on the ratio of the coordinates.
The selfsimilar problem of the refraction of a plane elastic wave into an

elastoplastic half-space with boundary conditions like those of Coulomb's
law of dry friction, and conditions guaranteeing full contact at the
boundary of separation, were analysed in /5, 6/.

1. Consider the dynamic problem of the theory of complex displacement in an ideal elasto-
plastic medium. 1In a rectangular Cartesian system of coordinates ; the vector of the rate
of displacement w is directed along zr; axis and depends only on z,, 7, and the time t,

All the components of stress vanish, apart from T, = O3 (Z;, 2y, 1), Ty == O3 (&), Ty, T} The
equations of motion in this case have the form

oL a8 o, (1.1
oz, 013 Cooot

The full deformations are the sum of the elastic and the plastic part, and the elastic
deformations are connected with the stresses by Hooke's law

=0Tl =t n=22m =2 (1.2)
In the plastic domain, the stresses satisfy the condition of plasticity, and the rates
of the plastic deformations are determined from the associated flow rule
2= =R P =41, T =y, . (1.3

The total rates of deformation are expressed in terms of the displacements by

. 1 dw . 1 ow
W= W= : (1.4)

Differentiating relations (1.2) with respect to time and eliminating the values of the
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rates of deformations, we obtain

61"

L= w2~ 2y,

OT’

= H—— d_,( — 2uyTy . (1.5)
The first Eq.(1.3) will hold identically if we assume
=ksin 0, 1, =4kcos 8. (1.6)

Substituting these values into Egs.(l.1) and (1.5), after eliminating ¢ we obtain a
set of equations for determining 8 and w. Consider the selfsimilar solution of this systen,
when the functions wand 6 depend only on =2 —¢l, y = z,, This system then takes the form

k(wsﬂ{%—sine%)-,;-pc = =0 (1.9)
p(cose%—sine%) ke Z—0.

The set of Egs.(l.7) is of the hyperbolic type. Its characteristics and relations along
the characteristics have the form

dy (M — cos 8) = sin 6 dz, k8 — pauw = const (1.8)
dy (M -+ cos 6) = —sin 8 dr, k8 + paw = const (1.9)
vhere a =] TJT is the velocity of longitudinal elastic waves, and M = ce¢ is the Mach
number .,
In the elastic domain and unloading zone the plastic deformations equal zero; then from
Eqgs.(1.1)-(1.4) we obtain
T, = pwe = f(y) (1.10)

6 A

F (ot —p) —=0. (1.11)

c A
ar

c

The set of Egs.(1.11) when ¢ > ]"p p is of the hyperbolic type. The characteristics
and relations along the characteristics have the form

r—1 M —1y=const. p} " M? = [ u — e1, = const (1.12)
4+ )1 M —1y=const, u) M? =1 u — c1, = const . (1.13)

The solution of boundary value problems of wave dynamics for elastoplastic media is
reduced to a determination of the solutions of Egs.(l1.11) in the elastic domain and of the
solutions of Egs.(l.,7) in a plastic domain and to finding the boundary of separation between
them from the conditions of continuity of the stresses, displacements and plastic deformations.

Note that we need confine ourselves only to those solutions of the Egs.(1.7) for which
the energy dissipation ) = y/'t1;, - 1,71, >> 0 at each peoint. Using relations (1.2), (1.4) and
(1.6), the condition for the energy dissipation to be positive can be written in the form

1, /6w . ow
D=-—2-A(\“ sxn9-,--;}y—cosB)>O (1.14)

2. We shall use the relations obtained to lnvestlgate refraction of the waves which pass
from the elastic half-space with parameters p; py, a; =1"u, p; to the elastoplastic half-space
with parameters p,.p: a,=1] u, p, Suppose the plane wave O4 (Fig.l) falls on the surface
of separation y = 0. The equation of the incident wavefront at any instant of time has the
form ycosq, + zsin -q¢, = const. Behind the incident
wavefront in the elastic half-space the following
relations hold:

n=0(h T=T@) v=u(0) Q= (2.1
—ycosp, —zsing, .

The equation of the reflected wavefront OB
has the form ycos ¢, — zsin @, = const. Behind
the reflected wavefront in the elastic half-space
a solution is obtained by combining the solution
Fig.1l (2.1) with the solution for the reflected wave

T =1 () =T (), w=w; () Q = ycos ¢, — zsin . 2.2)
From Egs.(1.10) and (1.11) it follows that

T () = =y (Q), . (Q) = —cp, ctg @, (D) 2.3)
T () = =Ty (). 1, () = 7l ctg g (D).



At the boundary of separation y = 0 the stresses 1, and rate of displacements w are
continucus, whence
w(z) = w, (—zsin ¢,) + w, (—2z sin ¢,) (2.4)
Ty (X} = 7y etg ¢ (W, (—2 sin ¢) — wy (—7 sin @)

I

where w (1) is the rate of the displacements, and 1, {r) is the stress at the boundary of
separation in the elastoplastic half-space.

Eliminating the function w, (—zrsin ¢,) from relations (2.4), we obtain the boundary
condition for the elastoplastic half-space

2uy (—xsin ¢)) = w (2) — epy 7 g @7y (7). 2.5)

It is assumed below that the function w; (Q,) is known, i.e. the profile of the incident
wave is given.

Consider the refracted wave in the elastoplastic half-space. In front of the refracted
wavefront OC, whose equation has the form ycos ¢ — zsing¢ = 0, the material is assumed to
be at rest: w = 1, =1, =0, i.e. in the neighbourhood of the line OC the material will be
in an elastic state.

Since when 7 = x we have 7, = 0 . and w = 0, then from (1.10) it follows that

T = —cClpae (2.6)

Relations (1.12) and (1.13) take the form

=1 M =1y=comst.p, Y M —tw e, =00 =ca; (2.7)
72— 1AM —1y=const,u, 1" M — lw —ct, = const . (2.8)

On the right-hand side of Eq.(2.7) the constant is put equal to zero, since on the line
OC we have 17, =U. w =0, therefore (2.7) can be considered as an integral of the eguation
of motion of the elastic medium. Using (2.7), we can represent the condition at the edge
(2.5) in the form
Mo lg @y (2.9

mLieg /)

Qun{— rsingg)=w (1)(1 -
It follows from the integrals (2.7) and (2.8) that the rates of displacements w and the
stresses T, T, remain constant along the characteristics (2.8). Therefore the yield point
will be reached immediately on all the characteristics, if it is reached at least at one
point.
It follows from the condition for reaching the yeild peoint

2

2 — P = a7ttt = ot = AR (2.10)

ané condition (2.9), that the material will remain elastic between the characteristics OC
and DE (FPig.l), until the following eguality is achieved at some point D of the boundary:

2y (— rsing )l = Ul i -. Halg G I 211
i (— rsing NZF( el (2.14)
On the line DE
we——t vi= — ksing, Tp==— kcosq. (2.12)
20

To the left of the line DE the material is in a plastic state, where (1.8) and (1.9)

occur.
Since on the line DE we have B = 1 — ¢. the characteristics of (1.9) intersect the line

DE and the following relations hold on them:
dy (M = cos 8) = —sin 8dz, k8 — por = k(1 — . + ¢). (2.13)

Since on the right-~hand side of the second relation (2.13) the constant is one and the
same for all the characteristics, this equation should be considered as an integral of the
equations of motion in the plastic domain. From the integral (2.13) and relations (1.8) we
find that along each of the characteristics of the other family, w and 6 do not change, whence
it follows that the characteristics (1.8) are rectilinear. Thus, we have

y (M — cos 8) — xsin § = const, k8 — pya,ur = const. {214

The characteristics (2.14) intersect the line DE and incline towards the r axis under
the angle a. for which
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te o —sin a/(M 4+ cos o) < tg @

gz sin ¢M — cos @) . 18 ¢
A Ll . v problem for the eguations of motion in a o domain on the
We therefore have a Cauchy problexm for th atidns ©X motion ir c domain on the

nlasti
a plasti
line DE, by solving which we determine 6 and w between the characterlst:.cs i
domain DE and the characteristics in the plastic domain DF, where

w= ki 0=+ ¢ (2.13)

From the boundary condition (2.5) and the integral (2.13) after eliminating w, we obtain

n the elastic

2y, (k)Y ictggu, (—zsing) =A(1 +n+ ¢ —8) —cosb (2.16)
UL G -
e ST @y

If A>1, then for any value of the left-hand side of Eq.(2.16) the latter has a unique
solution. If A < i, Eq.(2.16) can have three or more roots relative to 6. On the line
DE only the root 6, = 1 + ¢ reduces to a continuous conjugation of the solutions in the elastic
and plastic domain. Therefore in the plastic domain we should choose the root which ~ when
r approaches rp - approaches m - ¢.

Suppose this is the root 0 =0,. Then from Eq.(2.13) at the edge y = 0 we obtain

L
== (g — 0.

The values 6, and w remain constant along the line
y (M —cos8) — (x—2,(6,))sin6, =0 (2.17)

where z, is the coordinate of the boundary point, at which 6 =6,. The angle of inclination
to the 7 axis of this characteristic is connected with 8, by the relation

tg oy = —sin 8, (M — cos 6,). {2.18)

For the solution to occur, the angle «; must increase and the dissipation of energy D
in the plastic domain should be positive for the motion of the point H along the =z axis.
It follows from (2.18) that da;0r > 0. if

(1 —Mcos6,)d6,dr>0. (2.1%

Since 0, satisfies Eqg.(2.15), then when the argument increases - as long as function
w(Q,) increases, df,dr> 0, and inequality (2.19) will also hold if

4 ¥ < 0 ane
1T — W (o3 U) 4')

/
©

n
v,

W

At the point D we have 6, =1+ ¢, i.e. the inequality (2.20) clearly holds. Since
to the left of the point D we have d3,dr >0, then 0, dJdecreases as w, increases. Decreasing,
9, can attain the value a1 when the characteristic in the plastic domain becomes parallel
to the z axis. This is possible if the amplitude of the incident wave attains the value

k wsin @ } 1 )
Uy == ——omn | e e 50
' 2¢ Wy ( e Sin ¢y (=9 cor ¢, (2.21)

Suppose this value is attained at the point & and henceforth, as the argument increases,
the function w,; (w,) continues to increase, then the line M.V is a characteristic and on it
6,=n1a,and 1,=0,7, = —k, w = k (1 — ¢)p,a,)"%. The solution in the upper half-space is determined
by the boundary condition (2.16) on the line ON. The line MXN is a stationary line of the
discontinuity on which the rates of the displacements undergo a discontinuity, and it follows
from the dynamic conditions of compatibility on the surface of the strong discontinuity that
the quantity 1, is continuous on the line M. From (2.4) we obtain the intensity of the

reflected wave x

wy (— rsin¢q1)=uw, (— rsing¢,;) — ——=—— . (2.22)
’ V o cos @ '
Consider the energy dissipaticn in the plastic domain. From (1.14) and (2.13) we obtain
D= _Tp’;%(ﬂeme + 2 cus6). (2.23)
From Egq.(2.17) follows
20) % —sin=0, z(8) % ~ M —cos0=0 (2.24)

/ / dr_(8)\ . \
(:(9)=ky+ :6 )sme-—-(.z—xp(e)cose)).
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From (2.23) and (2.24) we obtain the condition for the energy dissipation z (0)(1 — M cos
6)1<{0 to be positive, which, using (2.20) and (2.17), we can transform to the form

(y(l — Meos®) + 22 (sin e)e) (sin ) <O. 2,93)

In the plastic domain nn {8 {n 4 ¢, y >0, therefore the inequaltiy (2.25) occurs at
any point of the plastic domain when 839z >0, Thus, D >0 at all points of the plastic
domain. When w, > w,® the energy dissipation D in the plastic domain is also positive, but
we should especially consider the dissipation when y = 0 in the zone of slippage. On the
stationary line of the discontinuity of the rates of displacement, the dissipation is positive
if w, > w;, where uw,. w, are the rates of displacement in the elastic and plastic domain.
From (2.22) and (2.13) we obtain the condition for the energy dissipation to be positive in
the form k k(1 +n)

2wy (— xsin —_ e
wi(—rsing) Vb cosqy Vo

Thus, in the loading zone, if the profile of the incident wave does not exceed w,° (profile
1 in Fig.2) then D >0, while w,(Q,) is an increasing function and D<0 when
wy () begins to decrease, i.e. after passing the maximum value of the profile a plastic
deformation is impossible and unloading begins. If the profile of the incident wave exceeds
w,° (profile 2 in Fig.2), then in the zone of excess on the line dividing the two media
slippage (discontinuity of displacements) begins. In this case the condition for the energy
dissipation to be positive will hold, while the profile of the incident wave exceeds w,°, i.e.
up to the value Q,°. Henceforth D <0 and plastic deformation is impossible, i.e. inloading
will take place.

(2.26)

3. suppose NL is the line dividing the plastic
domain from the unloading zone. 1In the unloading zone
when z < zy relations (1.12) and (1.13) hold, and they
can be written in the form

w(z,y)= DLV TN G VI -1y 31)
20009% ) M2 — 1
To(z, )= hiz —‘/M"‘“/)z—clz(-‘t-%—yMz——ly)

From the boundary condition (2.5) we have when z < 1y

Fig.2

LD —falz) _ tg@ (h{z)—12(2)) 3.2)

2uy (~ rsing,)=
:( ) 2, VM~ 1 2

Differentiating (3.2) and solving the equation obtained for f; (z), we obtain
2Ry (x)sdag—J (z) (g —d)sing

filn) = sing (¢ — d)
R, (z) = —sin qu)’ (—z sin ¢,) when z <] Zy; d = p,a; cos ¢ .

, E=1a,C08 ¢ (3.3)

The solution in the plastic domain (2.13) and (2.14) can be written in the form

(2, y) = k(l-a=g)—/, (ynga:—coseusinew—z) (3.4)
3 - - — M — cos ~ - -
8 (r,y) = k(ita—9) My(zlk cosB) (in@)2 —z) (3.5)

From the boundary condition (2.5) we have when z > iy

2uy (— xsin ¢)= kit n _‘2;52:,_!3(— 2 _ % tg g1k cosB . (3.6)

Differentiating (3.5) when y = 0 and (3.6) with respect to z and solving the set of two
linear equations obtained for f,' (—z) and 00 (z).dx. we obtain

69 () __ Ry (2) Paag? fo v 2R () 8Py 3.7
oz kg —b@)n’ fi' (=) (¢ b (8)) (&1
R, (z) = —2sin ¢, (—z sin ¢,) when 2 > 257 b (8) = —ayp,sin 0.

Suppose <z = ry 1is the point of the boundary, from which the propagation of the unlcading
wave y = y (z) begins, and the velccity of the wave of the unloading when =z =2y is ¢* =y
(zn)- '

It is assumed that on the unloading wave the stresses and rates of the displacements are
continuous, and in this case the following equations hold:
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(3.8)

I

?1(2 ";"'gi—j}') + /2 (I "“'y{_:}')
--§fn(k(i + g — s ( 24} -—1:))
)

»
fi (xfﬁt(i))—jz (x-— yt(’ === Dek cos 8

e,

|

where
€ = (A — 1YY, ¢, = sin B (W — cos §)?

€, ¢p are the velocities of the propagation of elastic and plastic waves,

Differentiating (3.8} with respect to & and writing the equations obtained for 2z = zy
and y(zx) = 0, we obtain the following set of eguations for finding the initial velocity of
the unloading wave o*

1) (14 ) + 1 ) (1= ) =22 (= 2m) (£ 1) (3.9)
e ] P

c!
2 (rx) (1+ _jf.) AT (w{%) = —csinbfy (— 1) ({%—-1) )

Using (3.3) and {3.7) to elimipate the functions [, {—azn), /o’ {rx) from it, we obtain the
following equations to determine ¢* :

F(c*)=Ry(zx)pasing (1— fi) (c sin @ (d - %’- g) + (3.10)

Y tp

It follows from (3.10) that when R, (zy) =0, R, (rx) 5 0 we have c¢* = . and when R, (ax)=t
0, Ry (zx) = 0 we have ¢* =g¢,. When R, (xn) 5= 0 and R, (zx) % 0, the sign of the quantities
£y and F{), as an analysis of Eg.{3.10) shows, depends on the sign of R, {zy) and R, {rx),
respectively, If A, (rx) and A, {(#x) have opposite signs, then Egq.{3.10) has at least one roct
which satisfies the ineguality

Pep 15 1e* | T e | (3.11)

If R, (zn) = Ry(zx) = 0, then from Eq. (3.9) we obtain 98dr = f,' {—ry) = U, and from (3.10)
the quantity ¢* is not determined. 1In this case, to determine the initial velocity of the
unloading wave we shall differentiate {3.2) twice and sclve the eguation obtained relative to
5 (x). we have

" 28 o («) gday = 1" (1) (¢ — d) sin
.i2 (I)M“:" ginq\& — d} * (312}

Hy{ry = 2 sin ¢, u" (—zsin g,)when s - ox .

Differentiating (3.5) twice when y = Uand (3.6) with respect to r and solving the set of
twe linear equations obtained for /," (—1) and ¢% ur*, we f£ind )

" e 2Hi (2} panyr o Hiipenes 5 5
A= =—="FF" 5= " Tu—ito (3.13)

H, (1) = 2sin? qu," (~—zsin gy) when 2 > zx .

Differentiating Eq.(3.8) twice with respect to r and writing the equations obtained when
r=gzx and ylzy} =0, we obtain a set of eguations to find the initial velocity of the
unloading wave. Using {(3.12) and (3.13) to eliminate the quantities f,(z) and f," (—1), we
obtain the following equation to determine ¢* :

Fo(e*)=Hiy(ry)(g = b(8))d (1— ({-)g)a - Hy(xx)eingpy > (3.1%)

({1—1)’ <csin 9(:1-‘» 28 g (-ﬁi)”d) -
d

o ok 2
—_— R 7> SN T B _
alernT () e))=0
At the point of the maximum K, (ry) <0 and H, (zy) << 0. Since F,(r,) <0, and F;(c,) > 0.
then Eq.(3.14) has at least one root which satisfies the inequality (3.11). If H, (xx) =

Hy {zx) = 0. then ¢* is not determined from Eq.{3.14).

Suppose all derivatives up to the n-th order of the functions w,* {—zsing,) and w” {—zxsin
¢} vanish and at least one derivative of the n - 1-th order differs from zero. Then to
determine the initial welocity of the unlcading wave of Eq.(3.8) we must differentiate n +1
times with respect to x when z == 2y and y(ry) = 0, and henceforth proceed as above.

Consider finding the initial velocity of the unloading wave when there is slippage.

The boundary condition (3.6) does not occur at all peints of the slippage zone, and the
properties of the function u;{~rsing,} affect the value of the initial velocity of the
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unloading wave when =z, lying not only in the neighbourhocod =z, but alsc in the neighbourhood
IM are the points at which the slippage begins. 1In this case it is convenient to set

fo(w (M — cos8) — z8in6) = f, (y (M — cos 8)(sin 8)'—z) in formulas (3.4) and (3.5). Differentiating

the condition of continuity of the velocities and stresses with respect to =z, we obtain

from (3.1), (3.4) and (3.5)

' + al \-"- ‘ —_ _C_' = -

e <1 e/ 1) (1 C,) (3.13)
- ' . . 99 (2, 0) o
:a W0 (;t M)+ dj; o }

W) (1) = ) (1 =) =0
€ e

In relations (3.15), we allow for the fact that in the case of slippage when =z & [zy, 7))
the guantity 6 acquires a constant value equal to . Differentiating (3.5) with respect
to y when y =0 and solving the equation obtained for /sy, we have

80 (7., ¥) RN 4
0.\ - gl:l N1 (8) (3.16)
Y yoo  Zh—apfs (0)

Differentiating (3.5) and (3.6) with respect to z in the neighbourhocd of the point =z,
we determine
1/ 0) = 2k (2p)7t . (3.147)

Using (3.3), (3.16) and (3.17) to eliminate the guantities 8.4y, /¢ (0), /' (z} from (3.15),
we obtain the following equation to determine  ¢* :

c* : C. 2
Fa(et) = komq (- et (e d__> -(1- <__> ) v Ry (aa) gde, (ryy —7p) = 0. (3.18)
CF ce :
When there is slippage ¢, =0. When R,(r;)=0 we have ¢*=¢, When R, (i),ﬁ 0, Eg.
(3.18) has at least one root which satisfies the inequality (3.11), since Fp (0) >
0, Fylee) <O Thus, the initial velocity of the unloading wave is determined in all the

cases considered. Further construction of an unloading wave can be carried out using the
well-known procedure in /7/.
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