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REFRACTION OF PLANE-POLARIZED WAVES AT THE BOUNDARY 
OF AN ELASTIC AND ELASTOPLASTIC HALF-SPACE* 

A.G. BYKOVTSEV 

Selfsimilar solutions of dynamic equations for antiplane deformation in 
an ideal elastoplastic medium are considered. A solution is constructed 
of the problem oftherefraction of plane-polarized plane waves of an 
arbitrary profile which penetrate from the elastic to the elastoplastic 
half-space. 

Selfsimilar solutions were investigated earlier /l-4/ when the rates 
of displacements and stresses depend only on the ratio of the coordinates. 
The selfsimilar problem of the refraction of a plane elastic wave into an 
elastoplastic half-space with boundary conditions like those of Coulomb's 
law of dry friction, and conditions guaranteeing full contact at the 
boundary of separation, were analysed in /5, 6,'. 

1. Consider the dynamic problem of the theory of complex displacement in an ideal elasto- 
plastic medium. In a rectangular Cartesian system of coordinates I, the vector of the rate 
of displacement 1:‘ is directed along r3 axis and depends only on r,, J? and the time t. 

All the components of stress vanish, apart from T, = (T,~ (x1, t2, t), T* = uz3 (L,, x2, 1). The 
equations of motion in this case have the form 

5 _L 'T2 n& (-J =. 
OS1 irz, ui (1.1) 

The full deformations are the sum of the elastic and the plastic part, and the elastic 
deformations are connected with the stresses by Hooke's law 

')11 = ;'l“ .L ,il', ,'2 = ys~ L I'?'; T1 = 2uyl~, T*= 2~~~,P . (1.2) 

In the plastic domain, the stresses satisfy the condition of plasticity, and the rates 
of the plastic deformations are determined from the associated flow rule 

11 2 2 $2 = p; yl’P = I#:‘,, y;p = I&, . (1.3) 

The total rates of deformation are expressed in terms of the displacements by 

i ^. .,,I' = - '" , 1 aI0 
2 dr, y*' = T r 

1 (1.4) 

Differentiating relations (1.2) with respect to time and eliminating the values of the 
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rates of deformations, we obtain 

(1.5) 

The first Eq.(1.3) will hold identically if we assume 

T, = k sin 8, T* = k CO8 0. (I.61 

Substituting these values into Eqs.(l.l) and (1.5), after eliminating rl, we obtain a 
set of equations for determining 6 and IL'. Consider the selfsimilar solution of this system, 
when the functions wand e depend only on t = t1 - ct, y = I*. This system then takes the form 

IS OOse-$-ssine.-S)Tw~=o 
( 

(1.i) 

p( ;; case- -sin edu. 
dY 

*)+ke&o. 

The set of Eqs.(l.7) is of the hyperbolic type. Its characteristics and relations along 
the characteristics have the form 

dy (.I[ - cos e) = sin 8 dr, ke - pate. = collst (1.8) 

dy (Jr + COO e) = -sin 6 dx, l,6 + ,XIIP = cow (1.9) 

where a = ]-!uI, is the velocity of longitudinal elastic waves, and .!I = c ‘a is the Mach 
number. 

In the elastic domain and unloading zone the plastic deformations equal zero; then from 
Eqs.(l.l)-(1.4) we obtain 

CT1 i }lU. = f (y) (1.10) 

67% aIt 
c--L ,I-- 

nz “Y 
-0, c~j(pc”-_)~=o. (1.11) 

__ 
The set of Eqs.(l.ll) when c> 1 up is of the hyperbolic type. The characteristics 

and relations along the characteristics have the form 

I - 1 7iFZ y = const. 11 1 ‘Til)- 14’ - CT? = conct (1.12) 

*+l-dl’ 1 y = const, u 1 *.1/"--u - ~7~ = ccnst (1.13) 

The solution of boundary value problems of wave dynamics for elastoplastic media is 
reduced to a determination of the solutions of Eqs.(l.ll) in the elastic domain and of the 
solutions of Eqs.(l.7) in a plastic domain and to finding the boundary of separation between 
them from the conditions of continuity of the stresses, displacements and plastic deformations. 

Note that we need confine ourselves only to those solutions of the Eqs.cl.7) for which 
the energy dissipation 1) = T,"T, + I.,'~?.~ > 0 at each point. Using relations (1.2), (1.4) and 
(l-6), the condition for the energy dissipation to be positive can be written in the form 

(1.14) 

2. We shall use the relations obtained to investigate refraction of the waves which pass 
from the elastic half-space with parameters p1 p,, a, = _- Jr= to the elastoplastic half-space 
with parameters pl. pl, a2 = 1 p2 p2. Suppose the plane wave UA (Fig.1) falls on the surface 
of separation y = 0. The equation of the incident wavefront at any instant of time has the 

form y cos v, + t sin .y, = coast. Behind the incident 
wavefront in the elastic half-space the following 

f c 
Y 

L' F 
R 

= 0 

5 

relations hold: 

71 = 7, (a,), 74 = 7* (w,), lf' = WI (R,); Q‘ = (2.1) 

-y cos I& - 2 sin q, . 
x M P D YI 5 The equation of the reflected wavefront OB 

has the form Y cos 'pi - tsin q1 = con&. Behind 

6 L the reflected wavefront in the elastic half-space 
a solution is obtained by combining the solution 

Fig.1 (2.1) with the solution for the reflected wave 

7r = 7, (q), 7g = 72 (C&l, W = WI (Q,): R, = y cos 'p, -t sin q,. (2.2) 

From Eqs.(l.lO) and (1.11) it follows that 

71 $2,) = -c"jl,w, (a,,, 72 cn,, = --e-'/L, ctg v,w, (Q,) (2.3) 
7, (R,) = -c-'u,u:* (Qs). 72 CR,) = c-‘/l, ctg T‘u?, (L-l,). 
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At the boundary of separation y = 0 the stresses T* and rate of displacements 1c are 
continuous, whence 

W (2) = m, (--t sin u,) + u’~ (-1 sin IJ,) (2.4) 

TP (x) = C-‘~I W3 q1 (u.? (--I sin VI) - U, (-I sin cp,)) 

where W.(I) is the rate of the displacements, and r?(r) is the stress at the boundary of 
separation in the elastoplastic half-space. 

Eliminating the function w,(-rsin q,) from relations (2.4), we obtain the boundary 
condition fpr the elastoplastic half-space 

%I, (--I sin q,) = u' (.r) - cp,-' tg y,r, (x). (2.5) 

It is assumed below that the function m,(Q,) is known, i.e. the profile of the incident 
wave is given. 

Consider the refracted wave in the elastoplastic half-space. In front of the refracted 
wavefront OC, whose equation has the form y COB r+ 2 z sin g = 0, the material is assumed to 
be at rest: IL' = T1 = TO = (I, i.e. in the neighbourhood of the line OC the material will be 
in an elastic state. 

Since when x = s we have T, = 0 and IL'= 0,then from (1.10) it follows that 

71 = -c-'~+. (2.6) 

Relations (1.12) and (1.13) take the form 

On the right-hand side of Eq.(2.7) the constant is put equal to zero, since on the line 
OC we have T? = 11. Ii' = 0. therefore (2.7) can be considered as an integral of the equation 
of motion of the elastic medium. Using (2.7), we can represent the condition at the edge 
(2.5) in the form 

It follows 
stresses 71% 71 

will be reached 
point. 

It follows 

from the integrals (2.7) and (2.8) that the rates of displacements w and the 
remain constant along the characteristics (2.8). Therefore the yield point 
immediately on all the characteristics, if it is reached at least at one 

from the condition for reaching the yeild point 

and condition (2.9), that the material will reoain elastic between the characteristics 01 
and DL’ (Fig.11, until +he following equality is achieved at some point D of the boundary: 

(3.11) 

On the line DE 

To the left of the line DEthe materiai is in a plastic state, where (1.8) and (1.9) 
occur. 

Since on the line DE we have 9 = rr - (I. the characteristics of (1.9) intersect the line 
DE and the following relations hold on them: 

dy (.!I - cos 0) = -sin Odr, NJ - p202w = I; (1 Y .rt + q). (-1.13) 

Since on the right-hand side of the second relation (2.13) the constant is one and the 

same for all the characteristics, this equation should be considered as an integral of the 
equations of motion in the plastic domain. From the integral (2.13) and relations (1.8) we 
find that along each of the characteristics of the other family, u‘and 6 do not change, whence 
it follows that the characteristics (1.8) are rectilinear. Thus, we have 

y (.\I - cos 0) - I sin 8 = const, ke - p?op = const (2.1-i) 

The characteristics (2.14) intersect the line DE and incline towards the r axis under 
the angle 0. for which 
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tgrx = -sin q’(M -i cm v) Q tg v . 

We therefore have a Cauchy problem for the equations of motion in a plastic domain on the 
line DE, by solving which we determine 0 and w between the characteristics in the elastic 
domain DE and the characteristics in the plastic domain DF, where 

IL’ = k/I/E, 8 = n -t w. (2.13) 

From the boundary condition (2.5) and the integral (2.13) after eliminating w, we obtain 

2pJ (ck)” ctgv,u’, (-I sin q,) = A (1 $ n + q~ - 0) - cos 8 (2.16) 

A=plsincCc~~(~, 
p2 an VI 

If A>l, then for any value of the left-hand side of Eq.(2.16) the latter has a unique 
solution. If A < 1, Eq.(2.16) can have three or more roots relative to 6. On the line 
DE only the root 8, = n + $ reduces to a continuous conjugation of the solutions in the elastic 
and plastic domain. Therefore in the plastic domain we should choose the root which - when 
.r approaches rn - approaches n T CF. 

Suppose this is the root 8 = 6,. Then from Eq.(2.13) at the edge y = 0 we obtain 

u’ = -i& (1 + n + cf - 0,). 

The values 8, and ~5 remain constant along the line 

y (AI - cos e,) - (2 - zp (e,)) sin 8, = 0 (‘.lT) 

where xP is the coordinate of the boundary point, at which 8 = 8,. The angle of inclination 
to the x axis of this characteristic is connected with 6, by the relation 

tgu, = --sin 8, ‘(.V - COB e,) (2.18) 

For the solution to occur, the angle czJ must increase and the dissipation of energy D 
in the plastic domain should be positive for the motion of the point H along the 5 axis. 

It follows from (2.18) that dc,'ar> 0. if 

(1 - >iI ~0s e,) ae, ii~ > 0, (2.19) 

Since O1 satisfies Eq.(2.15), then when the argument increases - as long as function 

U' (Q,) increases, de, ds > 0, and inequality (2.19) will also hold if 

l- .\I cog 8, > 0. (2.20) 

At the point D we have f3, = n + (r, i.e. the inequality (2.20) clearly holds. Since 
to the left of the point D we have d3,dr>0. then 9, decreases as W, increases. Decreasing, 

6, can attain the value 3 when the characteristic in the plastic domain becomes parallel 
to the I axis. This is possible if the amplitude of the incident wave attains the value 

(2.21) 

Suppose this value is attained at the point M and henceforth, as the argument increases, 
the function u'J(oJ) continues to increase, then the line M-1' is a characteristic and on it 
8, = z, and '5, =O,Q = --k,w = k (1 7- $J((J~u~)-*.The solution in the upper half-space is determined 
by the boundary condition (2.16) on the line 0-S. The line .!f.\' is a stationary line of the 
discontinuity on which the rates of the displacements undergo a discontinuity, and it follows 
from the dynamic conditions of compatibility on the surface of the strong discontinuity that 
the quantity r, is continuous on the line M.1'. From (2.4) we obtain the intensity of the 
reflected wave 

u',(-rssin'~J)='L.~(-Isili~J)- 
I/GWJ . 

(2.32) 

Consider the energy dissipation in the plastic domain. From (1.14) and (2.13) we obtain 

(2.23) 

From Eq.(2.17) follows 

z (e)$ -- sin e = 0, i2.24) 

(:(,)= (y+ 2g!i )siJJ6 --(z- S,(~)COS e)). 
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From (2.23) and (2.24) we obtain the condition for the energy dissipation 2 @)(l - Al cos 
e)-',<O to be positive, which, using (2.20) and (2.17), we can transform to the form 

( Y(l- M cos 0) _t *(sin e)2) (sin e)-1 < 0 . 

In the plastic domain n .<e <n +cp, y> 0, therefore the inequaltiy (2.25) occurs at 
any point of the plastic domain when 83,'ax > 0. Thus, D > 0 at all points of the plastic 
domain. When wul>wl" the energy dissipation D in the plastic domain is also positive, but 
we should especially consider the dissipation when y = 0 in the zone of slippage. On the 
stationary line of the discontinuity of the rates of displacement, the dissipation is positive 
if we > I+,, where w,, wP are the rates of displacement in the elastic and plastic domain. 
From (2.22) and (2.13) we obtain the condition for the energy dissipation to be positive in 
the form 

2u.,(--~ssjn~~)- 
k(i in) 

VzLf, >x 
:2.X) 

Thus, in the loading zone, if the profile of the incident wave does not exceed wr* (profile 
1 in Fig.2) then D>O, while WI a) is an increasing function and D<O when 

1L'l (QJ begins to decrease, i.e. after passing the maximum value of the profile a plastic 
deformation is impossible and unloading begins. If the profile of the incident wave exceeds 
WI0 (profile 2 in Fig.Z), then in the zone of excess on the line dividing the two media 
slippage (discontinuity of displacements) begins. In this case the condition for the energy 
dissipation to be positive will hold, while the profile of the incident wave exceeds wul'. i.e. 
up to the value 9,'. Henceforth D <O and plastic deformation is impossible, i.e. inloading 
will take place. 

3. Suppose A'L is the line dividing the plastic 
domain from the unloading zone. In the unloading zone 
when z <rx relations (1.12) and (1.13) hold, and they 
can be written in the form 

From the boundary condition (2.5) we have when x CC xx 

Fig.2 

Differentiating (3.2) and solving the equation obtained for jz'(z), we obtain 

(3.3) 

The solution in the plastic domain (2.13) and (2.14) can be written in the form 

u (r,y)= 
k (1 - 2 2 q)- J3 (y (.V - coz Cl)(5in8)-1 - I) 

Wr (3.4) 

e (r,y)= 
k(II n - g)- f3 (y (M-CO< 6) (-in 8)-l-z) 

2k 
(3.5) 

From the boundary condition (2.5) we have when I> 3,~ 

Differentiating (3.5) when y = 0 and (3.6) with respect to 5 and solving the set of two 
linear equations obtained for fs'(-I) and &I (I)&. we obtain 

(3.7) 

Suppose 1 = Ih' is the point of the boundary, from which the propagation of the unloading 

wave y = y (z) begins, and the velocity of the wave of the unloading when r =rN is c* = y' 

Ph.). 
It is assumed that on the unloading wave the stresses and rates of the displacements are 

continuous, and in this case the following equations hold: 



where 

-+ k(f ( +z-+“fp)-fs (Jp- Ii) 
fl (x +)_f*(df+?rkci3 

ce = -(X2 - f)-‘;r, cp = sin 6 (.V - cos 6)-X 

CI, CP are the velocities of the propagation of elastic and plastic waves. 
Differentiating (3.8) with respect to x and writing the equations obtained for 3 - IN 

and Y @xl = 0% we obtain the foLlowing set of equations for finding the initial velocity of 
the unloading wave c* 

.V(Ix)'i+~ 
\ > 

J;!?.(1.s)(1-~j=~~31(-*~)(~-l) (3.9) 

-h.(r\-ijt-_)=--cin013((--*S)(r-i). 
Y 

Using (3.3) and (3.71 to eliminate the functions fs'f--+ivf,fi'(x~) from it, we obtain the 
following equations to determine c* : 

It follows from (3.10) that when R, (x,v) = 0, I?? (IS) + 0 we have c* = c,. and when R, (x.~)# 
0, N, (I.%_) = 0 we have c* = Cy. When RI(.r~)+ 0 and &(rN} # 0, the sign of the quantities 
Ic‘fc,f and F(cJ, as an analysis of Eq. (3.10) shows., depends on the sign of &(;r~f and H,(xx,-), 
respectively, If R, {sx) and R? t-t'.\-\ have opposite signs, then Eq.(3,fO) has at least one root 
which satisfies the inequality 

I cp I t=. I c* I -: I c, I * (3.11) 

If R,(Q) = &(X.V) = 0, then frQm Eq,f3.9) We obtain c%.c?L- = j3'j-xs) = U. and from (3 .lO) 
the quantity P is not determined. In this case, to determine the initial velocity of the 
unloading wave we shaLl differentiate (3.2) twice and solve the equation obtained relative to 

fl" (I). We have 

,/tl) (r) = 
2/1:(r)?dlQ - fk" (T) (P - d) 5ill 'F 

*in T (a :-d) (3.12) 

H, (zr} = 2 (fin [rl)' u.~* (--I sift ql) when s ..C zx I 

Differentiating (3.51 twice when y = Uand (3.61 with respect ta I and solving the set of 
two linear equations obtained for fav(-.r) and ti% u.r:.we find 

Differentiating Eq.(3.8) twice with respect to x and writing the equations obtained when 
x = xx and y (TV> = 0, we obtain a set of equations to find the initial velocity of the 
unloading wave. Using 13.12) and (3.13) to eliminate the quantities 
obtain the following eqilation to determine c* : 

fe" (x) and f; f-rft we 

P,(c*)= H2(Y”,y)(g - b(B))d I- ( (+)‘j” T H1(z.v)-CiX1 qpe “C (3.14) 

(~-f)'(ePin6(d-:!~gL (if)*d)i 

+-2d~-j~j'p))=O. 

At the point of the maximum N, (I*.) < 0 and HI (XX) < 0. Since FI (c,) < 0, and PI (c,) > 0. 
then Eq.(3.14) has at Least one root which satisfies the inequality (3.11). of 
H, (I‘%) = 0. then c* is not determined from Eq.f3.14). 

H, h-_) = 

%I 
Suppose all derivatives up to the n-th order of the functions ~I+f--rsin~,) and vi- {--3sin 
vanish and at least one derivative of the n + I-th order differs from zexo. Then to 

determine the initial velocity of the unloading wave of Eq.(3.8) we must differentiate 
times with respect to f when 

n + 1 
z = XX and y(.r.~) = 0, and henceforth proceed as above. 

Consid@X finding the initial velocity of the unloading wave when there is slippage. 
The boadmy condition (3.63 does not occur at all points of the slippage zone, and the 
properties of the function ~~{--fPinq,I affect the value of the initial velocity of the 
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unloading wave when z', lying not only in the neighbourhood zH but also in the neighbourhood 

f.41 ? are the points at which the slippage begins. In this case it is convenient to set 
f,(y (Jl - cos 8) - I sin 0) = fa (y (M - cos 0)(sin 8)-r--t) in formulas (3.4) and (3.5). Differentiating 
the condition of continuity of the velocities and stresses with respect to I, we obtain 
from (3.1), (3.4) and (3.5) 

In relations (3.15), we allow for the fact that in the case of slippage when * E lI.v, In,] 
the quantity (3 acquires a constant value equal to n. Differentiating (3.5) with respect 
to 9 when I/= U and solving the equation obtained for aB!Q we have 

a6 (.z.,-, Y) s(NI-l)lr’(0) 
dY “‘0 2k - I&f* (0) 

(3.16) 

Differentiating (3.5) and (3.6) with respect to 
we determine 

fa' (0) = ?k (I,,,)-' 

Using (3.3), (3.16) and (3.17) to eliminate the 
we obtain the following equation to determine C* : 

z in the neighbourhood of the point I~,, 

(3.17, 

quantities $6 By, 1,'(O), fp'(~! from (3.15) , 

When there is slippage c,,=O. When R, (r,) = 0 we have c*=cp. When R,(r)+ 0, Eq. 
(3.18) has at least one root which satisfies the inequality (3.11), since F, (Oi z 
0, F, (cc) d 0. Thus, the initial velocity of the unloading wave is determined in all the 
cases considered. Further construction of an unloading wave can be carried out using the 
well-known procedure in /7/. 
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